Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 8(6): ziae053, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715931

RESUMO

Diabetes predisposes to spine degenerative diseases often requiring surgical intervention. However, the statistics on the prevalence of spinal fusion success and clinical indications leading to the revision surgery in diabetes are conflicting. The purpose of the presented retrospective observational study was to determine the link between diabetes and lumbar spinal fusion complications using a database of patients (n = 552, 45% male, age 54 ± 13.7 years) residing in the same community and receiving care at the same health care facility. Outcome measures included clinical indications and calculated risk ratio (RR) for revision surgery in diabetes. Paravertebral tissue recovered from a non-union site of diabetic and nondiabetic patients was analyzed for microstructure of newly formed bone. Diabetes increased the RR for revision surgery due to non-union complications (2.80; 95% CI, 1.12-7.02) and degenerative processes in adjacent spine segments (2.26; 95% CI, 1.45-3.53). In diabetes, a risk of revision surgery exceeded the RR for primary spinal fusion surgery by 44% (2.36 [95% CI, 1.58-3.52] vs 1.64 [95% CI, 1.16-2.31]), which was already 2-fold higher than diabetes prevalence in the studied community. Micro-CT of bony fragments found in the paravertebral tissue harvested during revision surgery revealed structural differences suggesting that newly formed bone in diabetic patients may be of compromised quality, as compared with that in nondiabetic patients. In conclusion, diabetes significantly increases the risk of unsuccessful lumbar spine fusion outcome requiring revision surgery. Diabetes predisposes to the degeneration of adjacent spine segments and pseudoarthrosis at the fusion sites, and affects the structure of newly formed bone needed to stabilize fusion.

2.
J Am Acad Orthop Surg ; 32(8): e368-e377, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38335498

RESUMO

There are numerous potential sources of thermal damage encountered in orthopaedic surgery. An understanding of the preclinical mechanisms of thermal damage in tissues is necessary to minimize iatrogenic injuries and use these mechanisms therapeutically. Heat generation is a phenomenon that can be used to a surgeon's benefit, most commonly for hemostasis and local control of tumors. It is simultaneously one of the most dangerous by-products of orthopaedic techniques as a result of burring, drilling, cementation, and electrocautery and can severely damage tissues if used improperly. Similarly, cooling can be used to a surgeon's advantage in some orthopaedic subspecialties, but the potential for harm to tissues is also great. Understanding the potential of a given technique to rapidly alter local temperature-and the range of temperatures tolerated by a given tissue-is imperative to harness the power of heat and cold. In all subspecialties of orthopaedic surgery, thermal damage is a relevant topic that represents a direct connection between preclinical and clinical practice.


Assuntos
Procedimentos Ortopédicos , Ortopedia , Humanos , Procedimentos Ortopédicos/efeitos adversos , Procedimentos Ortopédicos/métodos , Temperatura , Temperatura Alta , Regulação da Temperatura Corporal
3.
Spine (Phila Pa 1976) ; 49(8): 553-560, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36972147

RESUMO

STUDY DESIGN: Retrospective case series. OBJECTIVE: To characterize failure rates of cervical cages based on manufacturer and design characteristics using the nationwide database of reported malfunctions. BACKGROUND: The Food and Drug Administration (FDA) aims to ensure the safety and efficacy of cervical interbody implants postimplantation; however, intraoperative malfunctions may be overlooked. MATERIALS AND METHODS: The FDA's Manufacturer and User Facility Device Experience database was queried for reports of cervical cage device malfunctions from 2012 to 2021. Each report was categorized based on the failure type, implant design, and manufacturer. Two market analyses were performed. First, "failure-to-market share indices" were generated by dividing the number of failures per year for each implant material by its yearly US market share in cervical spine fusion. Second, "failure-to-revenue indices" were calculated by dividing the total number of failures per year for each manufacturer by their approximate yearly revenue from spinal implants in the US. Outlier analysis was performed to generate a threshold value above which failure rates were defined as greater than the normal index. RESULTS: In total, 1336 entries were identified, and 1225 met the inclusion criteria. Of these, 354 (28.9%) were cage breakages, 54 (4.4%) were cage migrations, 321 (26.2%) were instrumentation-related failures, 301 (24.6%) were assembly failures, and 195 (15.9%) were screw failures. Poly-ether-ether-ketone implants had higher failure by market share indices for both migration and breakage compared with titanium. Upon manufacturer market analysis, Seaspine, Zimmer-Biomet, K2M, and LDR exceeded the failure threshold. CONCLUSION: The most common cause of implant malfunction was breakage. Poly-ether-ether-ketone cages were more likely to break and migrate compared with titanium ones. Many of these implant failures occurred intraoperatively during instrumentation, which underscores the need for FDA evaluation of these implants and their accompanying instrumentation under the appropriate loading conditions before commercial approval.


Assuntos
Fusão Vertebral , Titânio , Estados Unidos , Humanos , United States Food and Drug Administration , Estudos Retrospectivos , Cetonas , Éteres
4.
Eur Spine J ; 33(2): 620-629, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151636

RESUMO

PURPOSE: This study aimed to compare the functional and radiographic outcomes of two surgical interventions for adult spinal deformity (ASD): anterior lumbar interbody fusion with anterior column realignment (ALIF-ACR) and posterior approach using Smith-Peterson osteotomy with transforaminal lumbar interbody fusion and pedicle screw fixation (TLIF-Schwab2). METHODS: A retrospective cohort study included 61 ASD patients treated surgically between 2019 and 2020 at a single tertiary orthopedic specialty hospital. Patients were divided into two groups: Group 1 (ALIF-ACR, 29 patients) and Group 2 (TLIF-Schwab2, 32 patients). Spinopelvic radiographic parameters and functional outcomes were evaluated at 3, 6, and 12 months postsurgery. RESULTS: Perioperative outcomes favored the ALIF-ACR group, with significantly smaller blood loss, shorter hospital stay, and operative time. Radiographic and functional outcomes were similar for both groups; however, the ALIF-ACR group did have a greater degree of correction in lumbar lordosis at 12 months. Complication profiles varied, with the ALIF-ACR group experiencing mostly hardware-related complications, while the TLIF-Schwab2 group faced dural tears, wound dehiscence, and proximal junctional kyphosis. Both groups had similar revision rates. CONCLUSION: Both ALIF-ACR and TLIF-Schwab2 achieved similar radiographic and functional outcomes in ASD patients with moderate sagittal plane deformity at 1-year follow-up. However, the safety profiles of the two techniques differed. Further research is required to optimize patient selection for each surgical approach, aiming to minimize perioperative complications and reoperation rates in this challenging patient population.


Assuntos
Cifose , Fusão Vertebral , Adulto , Animais , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Cabeça , Cifose/diagnóstico por imagem , Cifose/cirurgia
5.
Spine Deform ; 11(6): 1335-1345, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37329420

RESUMO

INTRODUCTION: Pedicle screw loosening is a significant complication of posterior spinal fixation, particularly among osteoporotic patients and in deformity constructs. In orthopedic trauma surgery, locking plates and screws have revolutionized the fixation of osteoporotic fractures. We have combined the traumatology principle of fixed-angle locking plate fixation with the spine principles of segmental instrumentation. METHODS: A novel spinolaminar locking plate was designed based on morphometric studies of human thoracolumbar vertebrae. The plates were fixed to cadaveric human lumbar spines and connected to form 1-level L1-L2 or L4-L5 constructs and compared to similar pedicle screw constructs. Pure moment testing was performed to assess range of motion before and after 30,000 cycles of cyclic fatigue. Post-fatigue fixture pullout strength was assessed by applying a continuous axial tensile force oriented to the principal axis of the pedicle until pullout was observed. RESULTS: Spinolaminar plate fixation resulted in superior pullout strength compared to pedicle screws (1,065 ± 400N vs. 714 ± 284N, p = 0.028). Spinolaminar plates performed equivalently to pedicle screws in range of motion reduction during flexion/extension and axial rotation. Pedicle screws outperformed the spinolaminar plates in lateral bending. Finally, no spinolaminar constructs failed during cyclic fatigue testing, whereas one pedicle screw construct did. CONCLUSIONS: The spinolaminar locking plate maintained adequate fixation post-fatigue, particularly in flexion/extension and axial rotation compared to pedicle screws. Moreover, spinolaminar plates were superior to pedicle screw fixation with respect to cyclic fatiguing and pullout strength. The spinolaminar plates offer a viable option for posterior lumbar instrumentation in the adult spine.

6.
Spine (Phila Pa 1976) ; 48(23): 1652-1657, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727830

RESUMO

STUDY DESIGN: A retrospective case series. OBJECTIVE: This study aims to assess the rates of lumbar interbody cage failures based on their material and manufacturer. SUMMARY OF BACKGROUND DATA: Perioperative lumbar interbody cage malfunctions are underreported events in the spine literature and may result in complications. Although the Food and Drug Administration ensures the safety of these devices under physiological conditions after implantation, these devices may experience nonphysiological conditions during implantation, which may be overlooked. MATERIALS AND METHODS: The MAUDE database was examined for reports of lumbar cage device malfunctions from 2012 to 2021. Each report was categorized based on failure type and implant design. A market analysis was performed by dividing the total number of failures per year for each manufacturer by their approximate yearly revenue from spinal implants in the United States. Outlier analysis was performed to generate a threshold value above which failure rates were defined as greater than the normal index. RESULTS: Overall, 1875 lumbar cage malfunctions were identified. Of these, 1230 (65.6%) were cage breakages, 257 (13.7%) were instrument malfunctions, 177 (9.4%) were cage migrations, 143 (7.6%) were assembly failures, 70 (4.5%) were screw-related failures, and 21 (1.1%) were cage collapses. Of the breakages, 923 (74.9%) occurred during insertion or impaction and 97 entries detailed a medical complication or a retained foreign body. Of the migrations, 155 (88.6%) were identified postoperatively, of which 73 (47.1%) detailed complications and 52 (33.5%) required a revision procedure. Market analysis demonstrated that Medtronic, Zimmer Biomet, Stryker, Seaspine, and K2M exceeded the calculated threshold. CONCLUSIONS: Lumbar cages with polyether ether ketone core material failed more frequently by breakage, whereas titanium surface cages failed more frequently by migration. Failure rates varied depending on the manufacturer. Most cage breakages identified in the present study occurred intraoperatively during implantation. These findings call for a more detailed Food and Drug Administration evaluation of these intraoperative malfunctions before commercial approval. LEVEL OF EVIDENCE: Level 4.


Assuntos
Parafusos Ósseos , Fusão Vertebral , Humanos , Estados Unidos , Estudos Retrospectivos , Radiografia , Polietilenoglicóis , Coluna Vertebral , Fusão Vertebral/métodos , Vértebras Lombares/cirurgia
7.
BMC Musculoskelet Disord ; 22(1): 699, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404368

RESUMO

BACKGROUND: Instrumented posterior lumbar fusion (IPLF) with and without transforaminal interbody fusion (TLIF) is a common treatment for low back pain when conservative interventions have failed. Certain patient comorbidities and lifestyle risk factors, such as obesity and smoking, are known to negatively affect these procedures. An advanced cellular bone allograft (CBA) with viable osteogenic cells (V-CBA) has demonstrated high fusion rates, but the rates for patients with severe and/or multiple comorbidities remain understudied. The purpose of this study was to assess fusion outcomes in patients undergoing IPLF/TLIF using V-CBA with baseline comorbidities and lifestyle risk factors known to negatively affect bone fusion. METHODS: This was a retrospective study of de-identified data from consecutive patients at an academic medical center who underwent IPLF procedures with or without TLIF, and with V-CBA. Baseline patient and procedure characteristics were assessed. Radiological outcomes included fusion rates per the Lenke scale. Patient-reported clinical outcomes were evaluated via the Oswestry Disability Index (ODI) and Visual Analog Scale (VAS) for back and leg pain. Operating room (OR) times and intraoperative blood loss rates were also assessed. RESULTS: Data from 96 patients were assessed with a total of 222 levels treated overall (mean: 2.3 levels) and a median follow-up time of 16 months (range: 6 to 45 months). Successful fusion (Lenke A or B) was reported for 88 of 96 patients (91.7%) overall, including in all IPLF-only patients. Of 22 patients with diabetes in the IPLF+TLIF group, fusion was reported in 20 patients (90.9%). In IPLF+TLIF patients currently using tobacco (n = 19), fusion was reported in 16 patients (84.3%), while in those with a history of tobacco use (n = 53), fusion was observed in 48 patients (90.6%). Successful fusion was reported in all 6 patients overall with previous pseudarthrosis at the same level. Mean postoperative ODI and VAS scores were significantly reduced versus preoperative ratings. CONCLUSION: The results of this study suggest that V-CBA consistently yields successful fusion and significant decreases in patient-reported ODI and VAS, despite patient comorbidities and lifestyle risk factors that are known to negatively affect such bony healing.


Assuntos
Vértebras Lombares , Fusão Vertebral , Aloenxertos , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos , Estudos Retrospectivos , Fusão Vertebral/efeitos adversos , Resultado do Tratamento
8.
World J Orthop ; 10(4): 206-211, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31041162

RESUMO

BACKGROUND: Allograft interbody spacers are utilized during transforaminal lumbar interbody fusion (TLIF) to reestablish anterior column support and disc height. While the TLIF technique offers many improvements over previous surgical methods, instrumentation and bone graft-related complications such as spacer misplacement or migration, screw fracture or misplacement, or rod breakage continue to be reported. The objective of this manuscript is to report on a fractured allograft interbody spacer that displaced into the neural foramen and resulted in impingement on the exiting nerve root that required revision. CASE SUMMARY: A 50-year-old male had two-level TLIF with immediate post-operative right L5 radiculopathy. Computed tomography scan demonstrated a fractured allograft interbody spacer that displaced into the right neural foramen and impinged on the exiting L5 nerve root. Revision surgery was performed to remove the broken allograft fragments from the right L5 foramen and the intact portion of the spacer was left in place. The right leg L5 radicular pain resolved. At the last follow up 12 mo after the index procedure, computed tomography scan confirmed sound interbody and posterolateral fusion. CONCLUSION: Displacement of broken allograft interbody spacer following TLIF procedures can result in neurological sequelae that require revision. To avoid such an occurrence, the authors recommend allowing sufficient time for the reconstitution of the graft in saline prior to use to decrease brittleness, to use an impactor size that is as close as possible to the spacer size and meticulous inspection of the cortical allograft spacer for any visible imperfection prior to insertion.

9.
J Surg Case Rep ; 2019(2): rjy346, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30788088

RESUMO

This case reports on a knee locked in flexion due to incarceration of the semitendinosus tendon around an osteochondroma in a patient with a history of multiple hereditary exostoses (MHE). An 18-year-old female with history of MHE presented with acute right medial knee pain and inability to extend her knee. Radiographs confirmed multiple lower extremity osteochondromas, notably a large, 3-cm pedunculated osteochondroma about her right medial proximal tibia. This was assessed as a locked knee secondary to incarcerated hamstring tendons around an osteochondroma. Excision of the osteochondroma restored normal flexion and extension of her knee. At the 3-month follow-up visit, she had returned to all activities with no recurrent medial knee pain or locking. The differential diagnosis for a locked knee joint can be broad, but tendon incarceration should be considered in appropriate patients with significant symptoms. In patients with a history of MHE, osteochondromas may be the cause of tendon entrapment.

10.
J Orthop ; 15(3): 832-836, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30140129

RESUMO

Cubital tunnel syndrome is the second most common peripheral nerve compression seen by hand surgeons. A thorough understanding of the ulnar nerve anatomy and common sites of compression are required to determine the cause of the neuropathy and proper treatment. Recognizing the various clinical presentations of ulnar nerve compression can guide the surgeon to choose examination tests that aid in localizing the site of compression. Diagnostic studies such as radiographs and electromyography can aid in diagnosis. Conservative management with bracing is typically trialed first. Surgical decompression with or without ulnar nerve transposition is the mainstay of surgical treatment. This article provides a review of the ulnar nerve anatomy, clinical presentation, diagnostic studies, and treatment options for management of cubital tunnel syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...